ECS Key Application Area

# Chapter 3.3 Digital industry

Chair: A. Bianchi, Co-chairs: P. Kuosmanen, M. Karaila, A. Lionetto.

E C S Strategic Research and Innovation Agenda 2025



Aeneas





#### Chapter 3.3 Digital industry Context

Electronic components and systems (ECS) are the future of Digital Industry.

- "Digital Industry" chapter intends to highlight the evolution of traditional industry through the introduction of cutting-edge digital technologies in production, management and distribution processes.
- These technologies include the Internet of Things (IoT), artificial intelligence (AI), data analysis, co-robotics, 3D printing and all digital innovations that can be usefully adopted in industry (advancements on sensing, powering, communications, computing, etc...)

#### Chapter 3.3 Digital industry Scope

Electronic components and systems (ECS) are the future of Digital Industry.

- Fast evolution of cutting-edge digital technologies
- Industrial Exploitation of: Internet of Things (IoT), artificial intelligence (AI), data analysis, co-robotics, 3D printing, additive manufacturing
- Integrating the Industrial Physical word with Digital Twins & Industrial Metaverse
- EU level manufacturing ecosystem together with future sustainability and greener industrial processes and artefacts, covering and exploiting: Discrete manufacturing, process industries, provisioning, production services, machinery and connected machines, UAVs and robots

- Digital Industry is value chains, supply chains and lifecycles, new materials for structures and electronic components.
- Digitalisation as a key enabler of sustainability of European industry
- Flexible and Resilient EU Supply Chains are a must

# Chapter 3.3 Digital industry Major Challenges 1/2

- Major Challenge 1: Responsive and smart production.
  - Robust optimal production, scalable first-time-right production
  - Mass customization and personalized manufacturing, customer-driven manufacturing
  - Resilient and adaptive production, including the shortening of supply chains and modular and flexible factories
  - Cognitive production
  - Manufacturing as a service
  - Embedded/Edge/Cloud architectures
  - Standardisation
- Major Challenge 2: Sustainable production.
  - Monitoring flows of energy, materials, waste and Lifecycle assessment
  - Virtual AI assistants
  - Human–machine interfaces and machine-to-machine communications
  - Human operators in more autonomous plants and in remote operations
  - Human safety
  - Competence and quality of work in a human-centred manufacturing
  - Green Deal
- Major Challenge 3: Artificial Intelligence in digital industry.
  - European AI framework
  - Al in manufacturing,
  - AI for decision-making,
  - Al for monitoring and control

# Chapter 3.3 Digital industry Major Challenges 2/2

- Major Challenge 4: Industrial service business, lifecycles, remote operations and teleoperation.
  - Remote operations, teleoperation
  - Al Services for monitoring and collaboration
  - Fleet management, Edge and local/global decision making
  - Business services integration
- Major Challenge 5: Digital twins, mixed or augmented reality, telepresence.
  - Digital Twin: Design process digitalisation, telepresence
  - Virtual commissioning, interoperability
  - Simulators: Tracking & Simulator based design
  - Digital twins combined with data-driven models (knowledge and data fusion)
  - Humans & Knowledge integration
- Major Challenge 6: Autonomous systems, collaborative robotics
  - Autonomous functions of systems
  - Safety and securityin autonomous systems
  - Requirements management and conceptual modelling of autonomous systems
  - Human-machine interaction in autonomous systems
  - Digital design practices including digital verification and validation (V&V)
  - Simulators and autonomous systems

### Chapter 3.3 Digital industry Key Trends

- Digitalization
- Smartness and Resilience
- Autonomy
- Flexible Supply Chains
- Sustainability

#### Chapter 3.3 Digital industry R&I Focus Areas

- Computations Capabilities, Simulations, Data Lakes Structures, Digital Twins
- Exploitaiton of RISC V architectures for challenging- industrial design, production and product performances
- Exploitaiton of Photonics for Industrial Metaverse
- Supply Chains Flexibility and Resilience
- AI/ML on the Edge/Cloud
- Energy efficiency on communication, processing, production & AI training
- AR/VR/XR, Robotics, Autonomy, TeleOperation
- Production Quality, Product Health Management System, Sustainable production and Life Cycle Management

### Chapter 3.3 Digital industry Wrap-up

- European Industry requires quick evolutions toward:
  - **Resilience** of EU production capabilities and supply chain towards Industrial EU sovereignty.
  - **Sustainability** of EU manufacturing renovation and evolution towards a greener and safer EU.
  - **Digitalisation** of EU Industry towards a quicker and better Innovation vocation, cost production and energy consumption saving and capacity to forecast market and societal needs.
- Production Quality, Product Health Management System, Sustainable production, supply chains and Life Cycle Management are all key aspects requiring:
  - Adoption of trustworthy, responsible AI, XR and robotics.
  - To foresee exploitations of **next generation HW architectures and new chip design** (e.g. RISC-V, PIC).
  - Adoption of any type of technology safeguarding **safety and security of workers**.